
EQUIVALENT LUMPED CIRCUIT STUDY FOR THE FIELD
STABILIZATION OF A LONG FOUR-VANES RFQ.

A. Pisent ,R. Celentano∗ and R. Zennaro#

INFN-Laboratori Nazionali di Legnaro, Padova (Italy)

                                        
∗ from University of Naples, Italy
# from University of Ferrara, Italy

ABSTRACT

The possibility to design an RFQ long respect to the RF
wavelength is very important for the feasibility of linacs
with different applications, from the high power CW
linacs for neutron production to the low power high
frequency linacs proposed for hadrotherapy. In particular
INFN  has been funded for the study of the critical parts
of a waste transmutation linac. In this framework the
field stabilization of a 352 MHz RFQ has been studied,
using the LANL resonant coupling technique; an
equivalent lumped circuit approach has been used, and
compared with MAFIA simulations. Based on the results
of these studies an aluminum model (1:1 scale, 0.04 mm
tolerances) has been built and we are now ready for the
test of the tuning procedure.

1  CIRCUIT MODEL
A four vanes RFQ resonator is based on a transfer line

quadrupolar mode, with dispersion relation:
2222 cko += ωω                                    (1)

where ω0 is the cut-off frequency, k is the wave number
and c is the asymptotic phase velocity. In an RFQ the
boundary conditions are such that the eigen modes are
given by nk π=l , with l cavity length and n (integer)
mode number. The same dispersion relation (1) is valid
for the circuit in Fig. 1, governed by the equation:
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with V intervane voltage, ZLdz = iωL1 dz coupling
impedance, L1 coupling inductance per unit length, and
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with L inductance length, C capacitance per unit length.
The solution of (2) can be written as:
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 All these parameters have for a RFQ a straightforward

meaning; LC/10 =ω  is the frequency of operation,

C is mainly the capacitance per unit length of the
quadrupolar vane tips, (of the order of 120pF/m), that
can be evaluated with the help of SUPERFISH.
Moreover 22

01 // cLL ω= , so as to have the asymptotic

phase velocity equal to c. This model can be discretized,
keeping the same meaning of the parameters involved, as
long as we are only interested in the first modes and the
upper cut-off in frequency can be neglected. The
resulting dispersion relation is:
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with dz (finite) discretization step and ldzπα = . In the

limit of dz→0 this relation reduces to (1), but if one is
only interested in the first two modes (n=0,1), one can
take 2l=dz , and the two frequencies correspond to the

α=0 and α=π modes by imposing 2
1 /32/ λ=LL ,with

λ=2πc/ω0; we shall use this result in the following.

Fig 1 Equivalent circuit for the longitudinal dependence of
the quadrupole modes a four vanes RFQ.

In a four vanes RFQ the operating frequency is ω0, and
therefore the field cannot be stabilized as foreseen by the
resonant coupling theory, since ω0 is never between an
upper and lower symmetrical frequency[1]. As a
consequence some drop of the voltage along the RFQ can
be expected in presence of mechanical errors for a long
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RFQ, since the distance of the operating frequency
respect to the first mode frequency is function of l/λ .

A possible way to stabilize the RFQ is suggested by our
circuit; we introduce a capacitance every two cells. In
other words we cut the transmission line into segments of
length 2dz, for each segment we consider only the n=0
and 1 modes, and we couple the segments with an
impedance aCa CiZ ω/1= . The result is a biperiodic

system governed by the equations
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with m=2j+1, n=2j, j integer,
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It is interesting to observe that the unknown x appears
in the non-diagonal terms and this is therefore a so-
called extended eigen value problem. Nevertheless, since
we have a lossless chain, one can look for a solution of
the form: u e un

i
n= −

α
2
. This condition leaves two

independent voltages, for example un  and un+1 , and

therefore the recursive relations determine a couple of
linear equations that have solution different from zero if:
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This is the new dispersion relation. The two bands,
corresponding to the two sign determination of the
square root, have even dependence on α, and the
fundamental frequency x=1, corresponding to α=0, is not
any more the lowest. Moreover we have the coalescence
of the two bands at α=0 when the square root vanishes,
i.e. for β=1. Therefore the stabilization of the
fundamental mode is realized when ω0=ωC, condition
that resembles the coalescence condition for the coupled
pillbox biperiodic chains.

In Fig. 3 we show the numerical solution a chain of 10
resonators (γ=.024, β=1). In the upper part we plot the
normalized frequency of the modes, together with the
dispersion relation (3) for an infinite chain of resonators;
the agreement is good, meaning that in this case the
termination conditions do not play an important role.
The fundamental mode and the two neighbor modes are
plotted in the lower part of Fig 3. These two modes have
the same long range dependence, but the oscillation
between next cells is in opposite phase. As a
consequence, for a small (1%) perturbation in the eigen-
frequency of the first resonator, the long range drop of
the field is compensated, but the short range oscillation
(first mode for each wave-guide segment) is enhanced. In
this sense the stabilization is not complete.

Fig 2 Biperiodic equivalent circuit.

Fig 3 Numerical solution of the equivalent circuit (γ=.024,
β=1, 1% perturbation in the frequency of the first resonator)
and dispersion relation for an infinite chain of resonators.

2. SCALING FOR A SEGMENTED RFQ
The lumped circuit model of the previous section has

been developed so to dimension a 352 MHz RFQ (about
6 m long) using the LANL technique for field
stabilization[2]. We just remind that the RFQ is split in
segments (of length 2 dz) coupled throw a coupling cell
with the geometry shown in the MAFIA plot of fig. 4.

The impedance of this coupling-cell has in general an
inductive (LA) and a capacitive component (CA),
determined by the cross talk of the magnetic fields of the
neighbor RFQ throw the opening, and by the capacitance
of the facing electrode terminations respectively.
Nevertheless for practical range of parameters the
capacitive term is the dominating one:
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With these assumptions we can get very practical
scaling relations. From the resonant coupling condition
β=1 we calculate the desired coupling capacitance:
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that determines the gap between electrode terminations.
Moreover the coupling strength is:
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The relative strength of the geometrical errors that can
be corrected (for example the relative error of the local
frequency) scales like γ; therefore short RFQ segments
give a better correction but a higher coupling capacitance
and a shorter gap. A short gap can be a problem because
of the construction tolerances even if in the lumped
circuit model we saw that the tolerances in β are rather
loose, and for example for the case in Fig. 3 β=1.2 still
gives significant field stabilization.

Fig 4 MAFIA simulation geometry in the coupling cell.

3. SIMULATIONS WITH MAFIA
One quarter of the structure has been simulated with

MAFIA. Moreover, to reduce the number of mesh points
we employed a simplified geometry, six times shorter,
that resonates at 5.9 times higher frequency, but
preserving the 352 MHz electrode geometry as much as
possible (Fig. 4). In this way the “ratio limit”, that is
substantially the ratio between the smallest mesh size
required (in the gap) and the total structure length, is
kept reasonable, and the CPU time required for
simulations is affordable.

In Fig. 5 and Fig 6 we show some typical. In Fig 5 the
frequencies of the fundamental and of the two neighbor
modes are plotted as a function of the gap length. The
fundamental mode frequency is of course untouched by
the change of capacitance. The equidistance of the
spurious modes is reached for a gap of 3.3 mm. With the
rough approximation of a planar condenser we get
Ca=0.27 pF.

From equation (4), taking into account that for our
simplified transverse C=80 pF/m, the capacitance for the
coalescence of modes is Ca=0.32 pF. If we consider that
the magnetic effects in the coupling cell and the edge
electric field due to the finite dimensions of the electrode

cross section have been neglected, the 16% agreement
achieved is fair.

To test the compensation we have compared the
longitudinal behavior of the voltage between the
segmented and the uncoupled RFQ in thee presence of a
perturbing piston tuner(fig 6).

Fig 5 Frequencies of the most relevant modes as a function of
gap length.

Fig 6 Effect of a perturbation on the RFQ with and without
coupling cells. .

4. CONCLUSIONS
We have introduced an equivalent circuit to model an

RFQ stabilized with the LANL technique. We think that
this rough model catches the essence of the problem,
giving the coalescence condition and the pass band
amplitude (related to the error correction capability) as a
function of few RFQ parameters, namely the operating
frequency, the length, the quadrupole capacitance per
unit length and the capacitance of the coupling cell. The
comparison with MAFIA confirms our scaling laws;
however we are not able to test the entire tuning
procedure (including the influence of dipole modes) with
MAFIA. For these reasons we have built an aluminum
model, 3 m long, 352 MHz. The RF measurements are in
progress.
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