
Submitted to Particle Accelerators

FREQUENCY MAP ANALYSIS OF AN

INTENSE MISMATCHED BEAM IN A FODO

CHANNEL

A. BAZZANI1, M. COMUNIAN2, A. PISENT2

1 INFN Sezione di Bologna and University of Bologna (Italy)
2 INFN Laboratori Nazionali di Legnaro, Padova (Italy)

Abstract

The comprehension of the mechanism that leads to small beam losses is one of the key points for
the feasibility of the next generation of high power linacs. In this paper we study the nonlinear
dynamics of the beam halo particles in a FODO channel, by using the Frequency Map analysis.
This tool provides a picture which allows to detect the regular, resonant or chaotic regions also
in the phase space for a mismatched beam in two degrees of freedom. Moreover we introduce a
criterion for single particle stability and we make comparisons with tracking results.
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1 INTRODUCTION

Proton linacs with beam intensities between 10 and 120 mA, for a beam power
up to 100 MW, are under study in various laboratories, for applications that go
from fundamental physics to energy production and nuclear waste transmutation
1. These performances will represent a big step forward with respect to the present
linac technology, and one of the most critical aspects is the control of beam losses.
Typically, losses lower than 1 W/m are needed to allow hand on maintenance in case
of fault 2. Moreover a signi�cant reduction of beam losses simpli�es the problem of
the stocking of activated parts and causes a smaller environmental impact.

These losses are associated with the presence of a beam halo, populated by very
few particles but with a radius signi�cantly larger than the beam rms (root mean
square) radius up to the bore hole. A great theoretical e�ort is presently devoted
to the understanding of halo formation3, 4, 5, 6.

A realistic simulation of an intense beam in a linac, able to follow 108�109 par-
ticles in a self-consistent way, taking into account the various scattering processes,
the interaction with the vacuum pipe, and whatever happens in a real linac, is a
too formidable task even for modern computers. Some simpli�cations are generally
introduced, in order to determine more handy systems that include anyway the
most relevant physical aspects. Many studies have concentrated on the two degree
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of freedoms problem determined by a collisionless continuous beam propagating in
a FODO focusing channel.

The space charge forces, acting on single particles, mainly determine this be-
havior, due to the nonlinear forces. The problem can be simpli�ed considerably
considering the space charge forces as generated by the core of the beam (particle-
core model), and calculating the core evolution using the method of the equivalent
KV (Kapchinsky Vladimirsky) beam7. Leaving the self-consistency, the single par-
ticle problem can be treated using the dynamical systems tools. In particular,
particles immediately outside the core can reach big amplitudes and form the halo
due to nonlinear resonances and chaoticity in the phase space. The mechanism
for the spill of a few particles from the core to the halo could be for example a
small non linearity of the space charge force inside the beam (deviation from KV
distribution5, image charges on the pipe..) or a low probability scattering process.

In this paper we have studied the beam dynamics in a FODO channel using the
particle-core model. We have faced a speci�c problem: many simulations show that
the halo formation is enhanced by the mismatching of the beam core. In this case
the hamiltonian system associated to the betatron motion of the test particle is not
periodically dependent on the longitudinal coordinate due to the non periodicity
of the envelope of the beam. The direct plot of the phase space obtained by using
a Poincar�e section does not allow to distinguish regular orbit from chaotic ones.
In this paper we use the method of the Frequency Map Analysis to represent the
phase space8, 9. This method has been applied to Celestial Mechanics10, 11 and
Accelerator Physics12, 13, to study the stability of the orbits, and turns out to be
very e�cient to detect the location of resonances and the chaotic regions. Moreover
it is not a�ected by the non-periodicity of the Hamiltonian systems and can be
extended to two or three degrees of freedom systems.

In section 2 we describe the particle-core model, we introduce the equation of
motion for a test particle, the periodic beam envelope and the envelope breathing
modes.

In section 3 we describe the focusing channel used for this study.
In section 4 we describe the method of the Frequency Map Analysis and we

discuss its application to our case.

In section 6 we show the numerical results of our F.M. analysis of the 2 degrees
of freedom system, describing a beam propagating in a FODO cell. We compare
the F.M. results with tracking, and therefore, choosing the initial points on the
basis of the F.M., we show a systematic study of the maximum particle amplitude
as a function of envelope mismatch.

2 THE PARTICLE-CORE MODEL

An intense proton beam propagating in an accelerating structure can generally be
treated as a Poisson-Vlasov problem. The particle distribution generates a �eld
(self-�eld) that can be computed by solving the Poisson equation in the beam
frame, and the distribution evolves according to a Vlasov equation, in which the
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superposition of external �elds and self-�elds is introduced. A solution of such a
system is called self-consistent beam evolution. This approach is approximated,
since collisions and e�ects of the complete electromagnetic system are neglected,
but it is generally adequate for proton linacs.

However, when we look at very small beam losses, it is reasonable to assume
that these losses are associated with the irregular behavior of a few particles in the
�eld generated by the regular particles, which form the "core" of the beam. This
distinction between core and test particles is clearly a short cut, and gives solu-
tions that are rigorously not self-consistent, but are practically correct if irregular
particles are a few.

However this approach gives a single particle system and the possibility of an
accurate analysis of the nonlinear behavior of the particles, using all the tools o�ered
by the Hamiltonian mechanics. This method assumes that it exists a self-consistent
periodic distribution for the beam propagating in a periodic focusing channel, like
the KV distribution. For this distribution the charge density inside the beam is
uniform and the single particle equations are:

x00j +Kj(s)xj �
�

(â1 + â2)âj
xj = 0 j = 1; 2 (1)

where s is the longitudinal coordinate, 0 indicates the derivative respect to s and
xj are the single particle transverse coordinates, with x1 horizontal and x2 vertical
displacement with respect to beam axis; � = [e=(��0)][I=(mc

3�33)] = I=(Ic�
33)

is the space charge parameter, with I beam current (peak current for a bunched
beam), Ic = 7:8 � 106A proton characteristic current, � and  relativistic fac-
tors; Kj(s) is the external focusing, and for a pure quadrupole channel K1(s) =
�K2(s) = K(s). Moreover we de�ne

âj =
q
a2j + � (2)

with aj = 2
q
hx2j i semiaxis of the elliptical beam cross section, � = 0 if

x2
1

a2
1

+
x2
2

a2
2

< 1

and � positive solution of:

x2
1

a2
1
+ �

+
x2
2

a2
2
+ �

= 1 (3)

otherwise.

The forces inside the beam are linear, and the equations of the envelope can be
found with the substitution in (1) of the Floquet functions xj = aj(s) exp(i j(s))
with

 0j =
�j

a2j
; (4)
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where the constants �j are the emittances. The resulting envelope equations are:

a00j +Kj(s)aj �
�

a1 + a2
�
�j

2

a3j
= 0: (5)

These equations, together with the single particle equations (1), give a coherent
description of the dynamics and a self-consistent solution of the Poisson-Vlasov
problem.

The equations (5) can be applied to more general cases than the KV distribution;

indeed they are valid for any distribution if interpreted statistically, with
q
hx2j i =

aj=2 and �2j = 16(hx2j ihp
2

j i � hxjpji2). However distributions di�erent from a KV
they are not a closed set of equations, since the space charge forces are not linear
and the rms emittances are not constant, but determined by independent equations
involving higher order momenta. Nevertheless for many distributions of practical
interest the emittance can be considered constant or as an adiabatic invariant, and
the envelope equations (5) can be used as a good approximation of the rms behavior
of the beam14, 15. We shall adopt this point of view.

In a focusing channel with period L one is interested in taking the initial beam
conditions in order to follow the periodic (matched) solution of the envelope equa-
tion aj(s + L) = aj(s), since this allows the regular transport of the beam for an
in�nite (in principle) number of periods. The phase advance per period can be
calculated from the equation (3) according to:

2��j =  j(s+ L)�  j(s) =

Z s+L

s

�jds

a2j
; (6)

the ratio �j=�0j , with �0j phase advance corresponding to � = 0, called tune de-
pression, gives a measure of the importance of the space charge in a speci�c case.

If ~a is periodic the single particle equations (1) are periodic and the Poincar�e
sections can be used for the analysis of the orbits. But in a real machine the beam
will be matched to the channel with an error, and the envelope will be aj(s)+�j(s),

with ~�(s + L) 6= ~�(s). In this case the equations of motion are not periodic and
the Poincar�e method is not well-grounded. In the next section we shall discuss a
possible solution to this problem.

If the deviation from periodicity is small, it can be calculated from the linearized
equations, giving rise to envelope modes that enter single particle dynamics. In
particular if the focusing is smooth (�j << 1=4 , j = 1; 2), one can directly calculate
the equilibrium envelopes

aj =

s
�jL

2��j
; (7)

and the zero space charge tunes:

�0j =

s
�2j +

�

4�2
L2

(a1 + a2)aj
: (8)
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The envelope modes are solution of the system:

�00j +Hj�j + h(�1 + �2) = 0: (9)

with Hj = �2
0j + 3�2j and

h =
�

4�2
L2

(a1 + a2)2
(10)

The mode eigen-frequencies are:

�� =

vuutH1 +H2

2
+ h�

s�
H1 �H2

2

�2

+ h2 (11)

and the corresponding eigen-vectors are:

~�� = (� sin�; cos�)

~�+ = (cos�; sin �) (12)

with

� =
1

2
arctan

2h

H1 �H2

(13)

mode mixing angle. In particular, if the focusing strength is equal in the two
directions, the mixing angle is �=4 (taking the limit of eq.(13) for positive H1 �
H2) and the two modes, called respectively odd and even envelope modes16, have
frequencies �� =

p
�2
0
+ 3�2 and �+ =

p
2(�2

0
+ �2). On the contrary if the

di�erence in focusing strength is large the mixing angle tends to zero. The lattices
of practical interest are smooth enough so that the two modes calculated in smooth
approximation can be recognized.

3 ANALYSIS OF A FODO

Our reference focusing is the FODO shown in �g. 1; the geometrical lengths and
the emittances �x = �y = 10�6m are kept constant. In the following of the paper
we vary �, KF and KD, corresponding to the three cases listed in Table I. The
consequent frequencies are in Table II, where �0 are calculated with the usual matrix
composition, and the other frequencies in smooth approximation. The envelope
mode mixing angle is calculated according to (13).

If we consider for example a proton beam at 100 MeV, the case # 1 corresponds
to a normalized emittance of 0.5 mm mrad, a gradient of 18 T/m and a beam peak
current of 0.8 A (22 mA of beam current with a bunch length of 10 deg.).

The tracking, which has been used for numerical simulations, is a kick code,
which integrates both the envelope equation (5) and the single particle equation
(1). Each element (quadrupole or drift space) is divided into 10 segments and the
nonlinear force due to space charge is computed by means of a kick map which
uses the envelope amplitude at the center of each segment. The linear motion is
computed exactly.
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FIGURE 1: Geometry of the nominal FODO cell 1m long; the focusing function K(s) = K1(s) =
�K2(s) is plotted, together with the matched envelopes a1 and �a2 in arbitrary units.

TABLE 1: Nominal cases.

Case � KF [m�2] KD [m�2]

1 10�6 12 12

2 10�6 12.2 11.8

We have checked the precision of our tracking by comparing it with a Rounge
Kutta of order four. We have computed the initial conditions for the periodic
envelope with the bisection method, using the smooth approximation as an initial
guess.

4 FREQUENCY MAP ANALYSIS

The analysis of the phase space by using the frequency map (F.M.) has been in-
troduced by J.Laskar8, 10 to study the Hamiltonian systems in Celestial Mechanics.
More recently the F.M. has been used to study the betatronic motion in hadron
circular accelerator.
The theoretical foundation of the F.M. goes back to the K.A.M. theory17, 18 which
states the existence of a C1 di�eomorphism between the set of invariant tori and the
space of frequencies. More precisely the K.A.M. allows to conjugate a regular orbit
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TABLE 2: Frequencies and mode mixing angles.

Case �01 �02 �1 �2 �� �+ 4�=�

1 .168 .168 .136 .136 .29 .31 1.

2 .179 .165 .145 .129 .28 .32 .34

(~xn; ~pn) of a perturbed symplectic map in d degrees of freedom with a translation
on an invariant torus

~xn = ~x(~�0 + n~�) (14)

~pn = ~p(~�0 + n~�)

the frequencies ~�, whose number is equal to the degrees of freedom of the system,
characterize the invariant torus, whereas the angles ~�0 depends on the initial con-
dition. The theory requires that the frequencies ~� satisfy a diophantine condition���exp(2�i~k � ~�)� 1

��� � j~kj���1 8~k 2 ZZ
d (15)

where � > d and  are constants, so that the resonant values are excluded. By
de�nition the F.M. associates each regular orbit with the corresponding frequencies
de�ned by eq. (14). If we choose a transverse section of the phase space (i.e. a
section which intersects all the invariant tori in a single point) the F.M. turns out
to be a map from the points of the section and the space of frequencies. There is
no general procedure to �nd a transverse section for a generic Hamiltonian system,
but in the case of a perturbed system the transverse section of the unperturbed
Hamiltonian is usually a good choice for the complete system.

In order to compute numerically the frequencies ~�, J.Laskar proposed a method
based on the FFT of the orbit (~xn; ~pn) by using the Hanning �lter, which allows to
get a numerical precision of the order O(1=N4), where N is the iterations number,
if the frequencies ~� and their harmonics are well separated (the di�erences have to
be much greater than 1=N). This method has been implemented 13, by using an
interpolation of 3 points of the FFT around the maximal value, which reduces the
computation of the frequencies to the solution of a linear system and turns out to
be very fast for the numerical computations.

The F.M. is regular in the domains whose points correspond to invariant tori,
but it can be extended to the resonant or chaotic orbits. In the �rst case we have
the phase locking phenomenon: i.e. all the orbits which belong to a resonant region
are mapped into the same resonant plane ~k � ~� = n; in the second case the result
of the F.M for a �xed number of iterations is very sensitive to the initial condition
and the F.M. is no more di�erentiable. The previous properties allow to use the
F.M. to get a picture of the phase space.
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FIGURE 2: One degree of freedom Poincar�e Map and Frequency Map for a matched beam prop-
agating in our nominal FODO (� = 3 � 10�6;KF = KD = 12; x2 = p2 = 0).

The main idea is the following: if one takes a uniform grid of points in the
transverse section and compute the F.M., the image in the frequency space provides
a characterization of the various regions of phase space. This image is either a
smoothly deformed grid of points, corresponding to the region of regular orbits, or
an empty channel around the resonant planes ~k �~� = n, since all the points lie on the
resonant planes due to the phase locking, or a cloud of points which are randomly
distributed in correspondence to the chaotic regions. As a consequence the F.M. is
very useful to get a global picture of the phase space, where the e�ect of dominant
nonlinear resonances is pointed out and the presence of chaotic regions is detected.
Of course the information of the F.M. becomes more precise, if we increase the
number of points in the grid and the number of iterations for each point.

In �g. 2 we illustrate the F.M. analysis of a one degree of freedom case: we
consider the single particle dynamics in our reference FODO channel, taking the
section x2 = p2 = 0. In the left part we show the phase space of the Poincar�e
map and the stars on the positive x�axis are the uniform grid of 500 points where
we have computed the F.M.; the positive x-axis is clearly a traverse section of the
phase space. In the right part of �g. 2 we plot the frequency � as a function of
the initial condition and the image of the grid is shown by the stars on the y-axis:
from the distribution of the points one can distinguish among the regular orbits,
the resonant regions and the chaotic orbits.

Another advantage of the F.M. is the possibility of an extension to a almost
periodically dependent symplectic map where a Poincar�e section cannot be de�ned.
For example we consider a symplectic map

(~xn+1; ~pn+1) =M(~xn; ~pn; ~�n) (16)
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periodically dependent on the parameters ~�n = ~�n, where the frequencies ~� do not
satisfy any resonant condition. In this case the K.A.M. theory conjugates a regular
orbit of the dynamics (16) with a translation on a torus whose dimension is equal

to the number of the degrees of freedom plus the number of the parameters ~�

~xn = ~x(~�0 + n~�; n~�) (17)

~pn = ~p(~�0 + n~�; n~�);

if all the frequencies ~�; ~� satisfy a diophantine condition. Then we can de�ne
the F.M. by associating with each regular orbit only the frequencies ~�, which still
characterize the orbit. When the frequencies ~�; ~� are resonant

~k � ~� + ~h � ~� = n (18)

where ~k and ~h are integer vectors, the phase locking still occurs and a resonant
channel appears in the image of a uniform grid of points in a transverse section
of the phase space. Finally when the orbits (18) are chaotic we have a sensitive
dependence of the F.M. on the initial condition. As a consequence the computation
of the tune gradient turns out to be a good parameter to distinguish between regular
and chaotic orbits. It is possible to introduce a threshold for the gradient, which
can be related to the local di�usion velocity in phase space.

In the case of the transverse dynamics of a FODO cell when we take into account
the space charge e�ect due to an intense beam lightly mismatched, the map (16)
turns out to be a 2 degrees of freedom symplectic map which depends on the
envelope frequencies �� and �+. The domain fx1 � 0; x2 � 0; p1 = p2 = 0g is
a transverse section of the phase space, if the space charge e�ect is not too big.
The betatronic frequencies of the motion (�1; �2) can be computed by using the
Fourier analysis of the complex signals ~zn obtained by projecting the orbit on the
coordinate planes

~zn = ~xn + i~pn: (19)

The betatronic frequency associated with the coordinate plane corresponds to the
maximum in the Fourier transform, if the space charge e�ect is not too big. This
fact is illustrated in �g. 3 where the FFT of a typical signal we have considered is
shown: the highest peak in the FFT corresponds to one of the betatronic frequen-
cies, whereas the other peaks give all the linear integer combination between the
betatronic frequencies and the envelope frequencies.

5 NUMERICAL ANALYSIS

The F.M. analysis of the two nominal cases has been performed, taking into account
matched and mismatched initial conditions. We have computed the F.M. for a grid
of 14 400 points, uniformly distributed in polar coordinates r =

p
x2
1
+ x2

2
, � =

arctan(x2=x1), in the domain fr � 5; � 2 [0; �=2]; p1 = p2 = 0g. The amplitudes x1
and x2 are plotted in matched beam envelope units, so that our domain corresponds
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FIGURE 3: FFT of the orbit (z1 = x1 + ip1) of a generic particle, outside the beam core. The
tunes in the two planes are di�erent (case #2) and the envelope is mismatched. The peaks are
characterized by four integers (k1; k2; h�; h+) corresponding to the decomposition ~k � ~� + ~h � ~�
(only a few are indicated in the plot, but 15 resonances are recognized by our code). The strongest
resonance (1; 0; 0; 0) for given initial conditions is the �rst frequency of the F.M; the second
frequency (0; 1; 0; 0) is determined by the FFT of z2 = x2 + ip2.

to 10 times the rms beam envelope. For each point we have evaluated the tune
gradient according to :

�� =
k~�(~x+ �~x)� ~�(~x)k

k�~xk
(20)

where �~x is a random vector of length 0.0175, which corresponds to half the radial
step. The threshold ��thr used distinguish regular and chaotic orbits has been
chosen equal to .03 and has been determined after an exploration of the parameter
space and a comparison with tracking results. The choice of the threshold is related
to the di�usion time relevant for the speci�c problem (about 1,000 periods for
linacs)19.

In �g. 4 left we plot the F.M. for the case #1 for the matched beam. The
bottom-left point corresponds to the particles inside the beam core, which su�er
the maximum tune depression due to space charge, and the upper right point cor-
responds to the particles far from the core, which do not feel any space charge.
The intermediate points are the particles that can su�er non linear resonances and
stochastic behavior. The phase space is dominated by the resonance �1 = �2, which
creates a channel able to connect the region outside the beam envelope and the re-
gion at large amplitude. A chaotic region is visible at large amplitude where both
tunes are resonant and several resonant lines cross each other. In �g. 4 right we plot
the initial conditions used for the F.M., which satisfy the condition �� < ��thr.
As a consequence, the missing points characterize the region where the di�usion
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could appear according to our criterion. We have a small region of chaotic particles
near the beam envelope due to the �1 = �2 resonance, which could become unstable
when we consider the mismatched case.

We have then mismatched the envelope initial conditions, by taking �1 = :3. In
this way both the odd and the even envelope modes are excited, since the initial
conditions can be decomposed as (�; 0) = �(�~�� + ~�+))=

p
2, and new resonances

are present in the F.M. plot (Fig. 5) due to the integer combination (18). We have
therefore an enlargement of the chaotic region of the �1 = �2 resonance because of
the overlapping with the new resonances (see �g. 5 left). The bigger chaotic region
is clearly visible in �g. 5 right, where we have plotted the stable points according
to our criterion and the di�usion is more severe.

We have then chosen a di�erent working point (case #2), so as to avoid the �1 =
�2 resonance, but at the same time with tunes close enough to satisfy approximately
the equipartitioning design criteria, generally adopted for high current linacs 20, 21.

In �g. 6 left and right the F.M. analysis is shown for the matched beam. The
F.M. still shows several resonant channels, which are well separated and therefore
without relevant chaotic regions. The chaotic region due to the �1 = �2 is visible
in the left part of the picture.

In this case the stable points cover almost all the analyzed region with the excep-
tion of very small chaotic areas where only a bounded di�usion could be detected.
When we consider the mismatched case two big resonances appear, creating a big
chaotic area in the analyzed region (see �g. 7 left). As a consequence we have
chaotic orbits starting from the envelope border (see �g. 7 right), but the maximal
amplitude reached by the unstable particles is smaller than the one in case #1.

6 TRACKING RESULTS

We are interested in beam di�usion after 1000 periods, that is a typical number for
a long linac.

We therefore choose initial conditions (typically 40 000) in a annulus immedi-
ately outside the beam core, between 1 and 1.4 times the beam envelope, and we
follow their evolution. The parameter rmax, maximum of r during the particle evo-
lution, is used to check the di�usion. In particular in Fig. 8, 9, 10 and 11 for the
di�erent cases described in the previous section, we plot the initial conditions used
for the tracking, and with a di�erent marker we characterize the particles that have
di�used up to an amplitude larger than 2. In each case this plot is compared with
the plot related to the �� criterion with the same scale. The comparison con�rms
our criteria; indeed for the matched case #1 the x = y channel is very small, and
there is not any di�usion. Whereas, when a 30% mismatch is added, a large region
with �� > ��thr appears (Fig. 9 right), and correspondingly many particles di�use
(Fig. 9 left).

For the case #2 matched the F.M. analysis gives only regular points and indeed
the tracking does not show any di�usion. Adding therefore 30% mismatch we can
see a di�usive region, foreseen by the F.M. analysis.
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We can therefore conclude that we did not see any di�usion in the points that
are regular according to F.M. �� criterion. This result gives a powerful means to
optimize the tracking.

As an example, we have done a systematic study of the di�usion as a function of
the beam mismatch in both cases. The possibility to concentrate the test particles
in the dangerous regions gives an enhancement of the sensitivity of these runs, with
very reasonable CPU time. It should be noted that the test particles have been
chosen, for every mismatch, in a region that includes the chaotic region for the
maximum beam mismatch considered. This results in a safety margin for the cases
with lower mismatch.

In Fig. 12 and Fig. 13 Rmax as a function of the mismatch k~�k is shown; in this
case Rmax is the maximum rmax (maximum r during the 1000 periods tracking)
among all the particles of the sample. The initial conditions correspond to the
region between 1 and 1.2 times the beam envelope. For the case #1 the simulations
have been done for three di�erent kinds of mismatch, �1 = ��2, �1 = �2 and �2 = 0,
corresponding to �~��, �~�+ and �(�~�� + ~�+)=

p
2. The �rst condition excites the

envelope odd mode, the second the even mode, the third both modes. For each
mismatch condition we performed 10 runs with 10 000 particles; due to our model
each run is clearly independent, so that the largest of the ten Rmax corresponds for
each mismatch case to the maximum displacement calculated with 100 000 particles,
while the spread gives an idea of the statistical properties of the di�usion estimate.

In the symmetrical case one can see that the excitation of the odd mode is
more dangerous than the excitation of the even mode. Moreover we remark that
when both modes are excited, so that we can have resonances due to the linear
combinations of all four main frequencies, the maximum displacements are the
largest.

For the case #2 we have done the simulations for initial conditions corresponding
to �~��, �~�+ and (�; �)=

p
2 (Fig. 13). The �rst two conditions give normal modes,

in the third case we have a signi�cant mode mixing (~� = :49~�� + :86~�+). We
observe that the mode mixing leads to a condition where resonances, involving four
frequencies, can be excited, and as a consequence it represents the worst condition
for beam stability and di�usion is enhanced. However we observe that the case #2,
which avoids the �1 = �2 resonance, is anyway better than case #1.

As a �nal point we have some remarks about the FODO model. The represen-
tation described in section 2, which has the advantage of being self-consistent and
largely studied in previous literature, is characterized by a very localized zone of
non linearity, immediately outside the beam core. In other words we follow a dif-
fusion (from envelope surface to large amplitude) driven by a nonlinear force that
vanishes as 1=r. As a consequence at large amplitude the motion is again regular
and bounded; the maximum amplitudes found in this paper are of about 4 times
the beam envelope, i.e. 8 times the beam r.m.s. size. These values would prob-
ably increase in a more realistic model, when one considers other nonlinearities,
like multipole errors in the quadrupoles and Bessel function dependencies of the
transverse RF �eld, that have a polynomial dependence on transverse coordinates.
Nevertheless the same analysis can be applied, without major di�culties, on a more
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realistic linac model.

7 CONCLUSIONS

The F.M. turns out to be an e�cient tool to represent the phase space of multidi-
mensional hamiltonian systems. It allows to detect the position of the resonances
and the chaotic regions with a high accuracy and it can be used for quasi-periodic
time dependent systems with 2 or more degrees of freedoms when the direct plot
of the phase space is not possible.

Our analysis of the transverse dynamics of a space charge dominated beam in a
FODO cell shows very well the role of the beam mismatching in exciting the various
resonances related with the beam modes. The importance of the initial mismatched
beam con�guration, in addition to the mismatch amplitude, is pointed out. The
consequent appearance of di�usive zones has been analyzed, and a criterion for the
determination of chaotic regions has been introduced.

This criterion has been checked with the help of tracking.
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FIGURE 12: Results of the systematic tracking for case #1. Each point gives Rmax (maximum
particle displacement in a 1000 period running among a sample of 10 000 test particles) as a
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