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Abstract

The comprehension of the mechanism that leads to small beam losses is one of the key

points for the feasibility of the next generation of high power Linacs. We present here an

analysis of the nonlinear dynamics of the beam halo particles in a FODO channel, based

on the Frequency Map analysis. This tools allows the representation of the phase space

also for the mismatched beam case. The in
uence of the image charges due to the presence

of the vacuum pipe has also been considered.

1. Introduction

Proton Linacs with beam intensities between 10 and 120 mA, for a beam power up
to 100 MW, are under study in various laboratories, for applications that go from the
fundamental physics to energy production and nuclear wastes transmutation [1]. These
performances will represent a big step forward respect to the present Linac technology, and
one of the most critical aspects to allow this improvement is the control of beam losses.
Typically losses lower than 1 W/m are needed to allow hand on maintenance in case of
fault[2].

These losses are associated to the presence of a beam halo, populated by very few
particles but with a radius of several times the beam rms (root mean square) radius up to
the bore hole. A great theoretical e�ort is presently devoted to the understanding of halo
formation [3] [4][5].

A realistic simulation of an intense beam in a Linac, able to follow 108�109 particles in

�Work partially supported by Human Capital and Mobility contract Nr. ERBCHRX-
CT940480.
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a self consistent way, taking into account the various scattering processes, interaction with
the vacuum pipe, and whatever happens in a real Linac, is a too formidable task even for
modern computers. Some simpli�cations are generally introduced, in order to determine
more handy systems that include anyway the most relevant physical aspects. Many studies
have been concentrated on the two degree of freedom problem of a collisionless continuous
beam propagating in a FODO focusing channel. In this hypothesis it is easy to see in
computer simulations, even with 1000-10000 particles, few particles getting rapidly to an
amplitude 4-5 times the rms value (�g. 1). Bigger amplitude increases have been shown in
more sophisticated simulations using a higher number of particles, especially in connection
with mismatched envelope beams[6].

This behavior, due to the non-linear forces, is mainly determined by the space charge
forces, acting on single particles. The problem can be simpli�ed considerably consider-
ing the space charge forces as generated by the core of the beam (particle-core model),
and calculating the core evolution using the method of the equivalent KV (Kapchinsky
Vladimirsky) beam [7]. The single particle problem can be treated using the tools of
dynamical systems. In particular particles immediately outside the core can reach big
amplitudes and form the halo due to non-linear resonances and chaoticity in the phase
space. The mechanism for the spill of few particles from the core to the halo could be for
example a small non linearity of the space charge force inside the beam (deviation from
KV distribution[5], image charges on the pipe..) or a low probability scattering process.

In this paper we have studied the beam dynamics in a FODO channel using the
particle-core model. We have faced a speci�c problem: many simulations show that the
halo formation is enhanced by the mismatching of the beam core. In this case the hamil-
tonian system associated to the betatron motion of the test particle is not periodically
dependent on the longitudinal coordinate due to the non periodicity of the envelope of the
beam. The direct plot of the phase space by using a Poincar�e section does not allow to
distinguish regular orbit from chaotic ones. In this paper we propose the method of the
Frequency Map Analysis to represent the phase space [8]. This method has been applied
in Celestial Mechanics [9] and Accelerator Physics [10,11,12] to study the stability of the
orbits and turns out to be very e�cient to detect the location of resonances and the chaotic
regions. Moreover it is not a�ected by the non-periodicity of the Hamiltonian systems and
can be extended to two or three degrees of freedom systems.

In section 2 we describe the particle in core model and we introduce the equation of
motion for a test particle.

In section 3 we recall the e�ect of a mismatching on the envelope of the beam.

In section 4 we study the contribution of the �elds induced by the beam on the vacuum
pipe.

In section 5 we describe the method of the Frequency Map Analysis and we discuss
its application to non periodic hamiltonian systems.

In section 6 we show the numerical results of our analysis on a 1 degree of freedom
system describing a beam propagating in a FODO cell. The same method can be extended
to the second degree of freedom following known procedures.
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Multiparticle simulation (10,000 macroparticles, PARMILA code, standard PC version, LANL) of a long FODO

channel, with the same parameters of the reference case studied in section 6 with particle core model. There

is not rms emittance increase, and we plot here the ratios between the emittance containing 100% of particles

and the rms value, and the same ratio for 90% of particles. The 
uctuation of the 100% emittance is due to the

irregular behavior of few particles.

2. The Particle-core model

The beam propagating in an accelerating structure can generally be treated as a
Poisson-Vlasov problem: the particle distribution generates a �eld (self-�eld) that can be
computed by solving the Poisson equation in the beam frame, and the distribution evolves
according to a Vlasov equation, in which the superposition of external �elds and self-
�elds is introduced. A solution of such a system is called self-consistent beam evolution.
This approach is approximated, since collisions and e�ects of the complete electromagnetic
system are neglected, but it is generally adequate for proton Linacs.

However when we look to very small beam losses, it is reasonable to assume that these
losses are associated with the irregular behavior of few particles in the �eld generated by
the regular particles, which form the "core" of the beam. This distinction between core
and test particles is clearly a short cut, and gives solutions that are rigorously not self-
consistent, but correct if irregular particles are few.

On the other hand this approach gives a single particle system and the possibility of

3



an accurate analysis of the non-linear behavior of the particles, using all the tools o�ered
by the Hamiltonian mechanics. If we introduce a set of coordinates ~a able to characterize
the particle distribution, like the statistical moments (like x, x2, xy, x2y0, xyy0..), the
particle in core model can be written as:

~a(s) = �(s; s0;~a0) (2:1)

~x0 = f(s;~a(s); ~x) (2:2)

where s is the longitudinal coordinate, 0 indicates the derivative respect to s and ~x are the
single particle coordinates; ~a0 refers to the initial position s0. In the presence of a periodic
focusing one is interested to the periodic distribution:

~a(s + L) = ~a(s) (2:3)

with L length of the period.
It is in principle possible to follow numerically the core of the beam, with the usual

codes, and therefore to solve the single particle equation (2.2). In practice things are not
so simple. The distribution is in general characterized by several statistical moments, so
that the periodic solution (2.3) is very di�cult to be found. Even to write explicitly the f
function of equation (2.2) is di�cult and it is in general easier to track the test particles
in the actual �eld generated by the core particles.

Fortunately it exists a particular case in which a self-consistent periodic distribution
for a beam propagating in a periodic focusing channel can be found: the KV distribution.
A uniform charge density, with beam pro�les corresponding to an ellipsis E of semi-axis ax
and ay, can be characterized just by the second order momenta x2 = ax=2 and y2 = ay=2.
The forces on the single particle can be calculated (by solving Poisson equation in elliptical
coordinates) and correspond to the equations of motion:

x" +K(s)x �
�

(ax� + ay�)ax�
x = 0

y"�K(s)y �
�

(ax� + ay�)ay�
y = 0

(2:4)

where the space charge parameter is

� =
e

��0

I

mc3�3
3
=

I

Ic�3
3
;

I is the beam current (peak current for a bunched beam), Ic = 7:8 � 106A is the critical
current, � and 
 are relativistic factors, K(s) is the quadrupole external focusing. If
(x; y) 2 E the parameters ax� and ay� are the semi-axis ax and ay of the ellipsis E,
otherwise if (x; y) =2 E, ax� and ay� are the semi-axis of an ellipsis confocal to E where
the point (x; y) located and are de�ned

ax� =
p
a2x + � ay� =

q
a2y + �
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where � is the solution of:
x2

a2x + �
+

y2

a2y + �
= 1:

The forces inside the beam are linear, and the equations of the envelope can be found
with the substitution in (2.4) of the Floquet functions:

x = ax(s)e
i x(s) y = ay(s)e

i y (s)

with
 0x =

�x

a2x
 0y =

�y

a2y
(2:5)

where the constants �x and �y are the emittances. The resulting envelope equations are:

ax" +K(s)ax �
�

ax + ay
�
�x

2

a3x
= 0

ay"�K(s)ay �
�

ax + ay
�
�y
2

a3y
= 0:

(2:6)

These equations, together with the single particle equations (2.4), give a coherent descrip-
tion of the dynamics and a self-consistent solution of the Poisson-Vlasov problem. The
distribution that gives a homogeneous charge density and linear space charge forces is the
KV distribution.

In accelerator physics the equations (2.6) are applied to more general case than the
KV distribution. Indeed they are valid for any distribution if interpreted statistically, with

x2 = ax=2 and �x = 4�rmsx, with �
2
rmsx = x2 x02 � xx0

2
, and analogous expressions for the

vertical plane.
With distributions di�erent from a KV, the space charge forces are not linear and the

rms emittances are not constant. Nevertheless it has been shown that for many distri-
butions of practical interest the emittance can be considered constant or as an adiabatic
invariant, and the envelope equations (2.6) can be used as a good approximation of the
rms behavior of the beam [13][14]. We shall adopt this point of view.

3. Periodic envelopes and envelope modes

In a periodic focusing channel one is interested to take the initial beam conditions in
order to follow the periodic (matched) solution of the envelope equation:

âx(s+ L) = âx(s) ây(s + L) = ây(s);

this allows the regular transport of the beam for an in�nite (in principle) number of periods.
The phase advance per period can be calculated from the equation (2.5) according to:

�x =  x(s +L) �  x(s) =

Z s+L

s

�xds

â2x
�y =  y(s + L)�  y(s) =

Z s+L

s

�yds

â2y
;
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for a pure quadrupole channel (focusing function opposite in vertical and horizontal plane)
�x = �y = �; the ratio �=�0, with �0 phase advance corresponding to � = 0, called
somehow improperly tune depression, gives a measure of the importance of the space
charge in a speci�c case.

In real life the beam will be matched to the channel with an error:

ax(s) = âx(s) + �x(s) ay(s) = ây(s) + �y(s);

if this error is small the deviation from the periodic solution can be calculated from the
linearized equations:

�x" +

�
K(s) +

�

(âx + ây)2
+
3�2x
â4x

�
�x +

�

(âx + ây)2
�y = 0

�y" +

"
�K(s) +

�

(âx + ây)2
+
3�2y
â4y

#
�y +

�

(âx + ây)2
�x = 0:

From the eigenmodes of the transfer matrix of a period, one can compute the frequen-
cies of the envelope modes [15]. If �0 << � the smooth approximation can be applied:

âx = ây = constant = a K =
��0
L

�2
� =

�L

a2
�2 � �20 = �

�L2

2a2

and it is possible to decouple the two modes of oscillation:

(�x + �y) " +
2(�20 + �2)

L2
(�x + �y) = 0

(�x � �y) " +
�20 + 3�2

L2
(�x � �y) = 0

that are called respectively the even and the odd mode[15]; the lattices of practical interest
are smooth enough so that those two modes can be recognized, and this simple estimate
of their frequency (�even =

p
2(�20 + �2) and �odd =

p
�20 + 3�2) is well ful�lled. If the

beam is not matched the single particle equations (2.2) are not periodic, since:

~a(s + L) 6= ~a(s)

and therefore it is impossible to use the Poincar�e sections for the analysis of the orbits.
We shall discuss in the section 5 a possible solution of this problem.

4. E�ect of the vacuum pipe

The beam has in general an elliptical cross section in a circular vacuum pipe with
radius b. The presence of the pipe, that restores the condition of cylindrical symmetry
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at radius b instead of in�nity, induces additional �elds that can be calculated with the
method of the image charges. The term to be added to eq. (2.4) can be written, for a
uniform charge density, in the closed form:

Ex + iEy


3�2mc2
=
�

2

1

x� iy

1�
q
1� F2

b4
(x � iy)2

1 +
q
1� F2

b4
(x � iy)2

'
�

8

F 2

b4
(x � iy) +

�

16

F 4

b8
(x � iy)3 + ::

with F 2 = a2x � a2y . The linear part of this force enters into the envelope equation, with
a (small) modi�cation of the periodic solution and of the envelope modes. For example in
smooth approximation the periodic (stationary) solution has circular cross section and is
not a�ected by this �eld, as well as the even envelope mode; the odd mode frequency is
instead depressed to:

�
�odd

�0

�2
= 1 + 3

�
�

�0

�2
�
1

2

ha
b

i4(
1�

�
�

�0

�2)
:

For a completely space charge dominated beam (� = 0) this mode is still stable, even if
resonances can be met.

The non linear part of the force, present also inside the beam, could contribute to
the spill of particles from the core to the halo. Anyway in the numerical cases we have
simulated (one degree of freedom) we did not see any signi�cative e�ect. The e�ect of the
reactive part of the environment impedance, generated by the accelerating cavities, will be
investigated later.

5. De�nition of the Frequency Map

The idea to introduce the Frequency Map (F.M.) is due to J.Laskar [8,9] in order
to represent the phase space of Hamiltonian systems with several degrees of freedom.
For the sake of simplicity we shall discuss only the case of one degree of freedom (1D)
Hamiltonian systems quasi-periodically dependent on time. More precisely we consider a
time dependent Hamiltonian system of the form

H0(x; p) + �H1(x; p; �1; :::; �m) �j = !jt j 2 [1;m] (5:1)

where the dependence on the parameters �j is periodic of period 2�.
Let x(t); p(t) any solution of the Hamiltonian system (5.1); for any interval �t we con-

sider the discrete orbit (xn; pn) = x((n�t); p(n�t)) and we compute the Discrete Fourier
Transform (D.F.T.)

Z(�) = lim
N!1

1

N

NX
n=0

(xn + ipn)e
�2�in� � 2 [0; 1] (5:2)
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The F.M. associates to the orbit xn; pn the frequency corresponding the maximum value
of jZ(�)j. If � � 1, by using the KAM theory it is possible to prove the existence of
solutions which can be conjugated to an uniform translation on a m+1-dimensional torus
with frequencies 


�
; !1; :::; !m. The KAM theorem requires the following conditions:

a) the frequencies 

�
; !1; :::; !m are not resonant and satisfy a diophantine condition [16];

b) let 
(I) the frequency of the unperturbed motion as a function of the action I then
there exists a solution I

�
to the equation 
(I) = 


�
and d
=d I � �.

In this case the orbit (xn; pn) can be expanded according to

xn + ipn =
X
k

ake
ikn
��t + �

X
k1;:::;km;km+1

bk(�)e
i(k1!1+:::+kmn!m+km+1
�)n�t (5:3)

so that the F.M. computes the frequency k

�
=2� corresponding to the maximal value of

jakj. For most of the model which are relevant for Accelerator Physics, the unperturbed
invariant curves are not too di�erent from circles so that the maximum is achieved at k = 1
and the frequency 


�
=2� is the nonlinear tune of the orbit.

If the orbit xn+ipn lays on an invariant KAM torus the frequency 

�
=2� characterizes

the torus (and not the particular orbit); as a consequence the FM is correctly computed if
we choose an initial condition for each invariant surface. If the frequencies are in an integer
ratio with 2�, we de�ne the Poincar�e map with a period that is an integer combination of
the fundamental periods, and we can choose the initial conditions on the Poincar�e section.
If the frequencies do not satisfy any resonant condition the Poincar�e section can be de�ned
as a limit process of the Poincar�e maps associated with the rational approximations of the
fundamental periods.

The behaviour of the F.M. is strictly related to the properties of the orbits: we
distinguish three cases. If the orbits lie on a KAM tori then according to a theorem of
Poeshel [17] there exists a C1 function which interpolates the frequencies 


�
=2� and the

F.M. is a regular monotonic curve.
In the case that the frequencies 


�
; !1; :::; !m satisfy a resonant condition, by applying

the Birkho� theorem [18], we can prove the existence of a family of regular orbits whose
frequency is locked to the resonance value (phase locking) so that the F.M. is constant.
Moreover the derivative of the F.M. is divergent as we approach the external border of
the region; as a consequence the F.M. detects the presence of very small resonances in the
phase space.

Finally in case of chaotic orbits the Fourier spectrum is no longer discrete and for a
�xed number of iterations N the result of the F.M. turns out to be very sensitive to the
initial condition and we get an irregular curve.

The main property of the F.M. is the possibility of representing the phase space of the
system (5.1) by using a single curve in a Poincar�e section: in the case we are considering the
x-axis will be a good choice. We consider a partition of the curve in equally space intervals;
the length �x of the intervals gives a measure of the scale at which we are analyzing the
phase space. For each point of the partition we numerically compute the orbit up to a given
iteration number N and then we evaluate the frequency corresponding to the maximum
value of the D.F.T. jZ(�)j. The e�ciency of the F.M. analysis is greatly improved by the
existence of algorithms based on the Hanning �lter which allows to compute the maximal
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value of jZ(�)j with a precision / 1=N4 if the distance of the frequencies 

�
; !1; ::!m is

� 1=N [8],[11]; the complexity is equivalent to the FFT which usually gives a precision
/ 1=N .

For a 1D system the F.M. provides a curve as a function of the partition points. Of
course the numerical smoothness of the curve depends on the ratio between precision of
the tunes with the scale �x which we use to explore the phase space; in order to get a
smooth curve in a region of regular orbits we have to choose a su�ciently great iteration
number N in order to reduce the ratio � 1; this condition has to be checked numerically.

The generalization to the 2D case is possible and the advantages of the F.M are even
more relevant since it is possible to represent the phase space on a plane by using a surface
in a Poincar�e section.

6. Numerical Results

We have integrated the equations (2.4) and (2.5) for a FODO cell by means of a
symplectic tracking program; the vertical amplitude of the test particle has been set to
zero (y = y0 = 0) so that the hamiltonian of the systems has the form (5.1). Both the
quadrupole magnets and the empty parts have a length of :2m, as shown in �gure 2.
Various cases have been simulated; in the following of the paper we illustrate the method
in the typical case:

�x = �y = 10�6m:; � = 4 � 10�6; Kmax = 15:5m�2

correponding to

�0

2�
= :1687;

�

2�
= :084;

�odd

2�
= :21;

�even

2�
= :26;

where �0 is calculated with the usual matrix composition, and the other frequencies in
smooth approximation. The tracking program divides each element in 10 segments and
the nonlinear potential due to the space charge is inserted by using a kick map in the
center of each segment. We have checked the precision of the tracking by comparing with
a Runge Kutta of order four. We have computed the initial conditions âx; ây for the periodic
envelope and then we have excited (mainly) the odd mode by choosing the initial condition
�x = 0:1âx; �y = �0:1ây.

In �g. 3 we plot the Fourier transform of an internal orbit for these cases called the
matched and mismatched case. If the beam is matched we have a single peak corresponding
to the betatron frequency � = :0837555; in the second case we observe various peaks which
are due to the integer combination of three frequencies that can be recognized as the be-
tatron frequency � = :0845028, the odd and the even envelope frequency (�odd = :2251448
�even = :2673941); the integer coe�cients corresponding to each peak are reported on the
�gure. We observe that the betatronic frequency corresponds to the largest amplitude.

As a �rst step we show the results of F.M. analysis applied to the matched case. In �g.
4 we show the Poincar�e section of the transverse phase space in the normalized coordinates

z1 =
x

âx
; z2 =

x0âx

�x
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Figure 3
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FFT of the orbit of particle inside the beam core; matched(crosses) and mismatched case(squares): in the

last case nearby each peak we report the integer coe�cients (k1;k2;k3) which de�ne the linear combination

(k1�+k2�odd+k3�even of the betatronic frequency and the envelope frequencies corresponding to the peak. The

initial conditions select the odd mode.

the same number of orbits and the same number of iterations than in the matched case.
According to the theoretical results given in section 5 we can easily recognize the presence
of resonances and chaotic regions from the irregular behavior of the curve. The initial

at part of the picture is due to the linear motion of the interior particles of the beam
since we have assume the K.V.-distribution. On the pictures we have reported the integer
coe�cients (k1; k2; k3)of each nonlinear resonance k1� + k2�odd + k3�even 2 ZZ. In the
last picture of �g. 7 we have reported the value of xmax for each orbit. We remark the
correspondence between 
at parts of this curve and the irregular behavior of the F.M.
which means that there are chaotic orbits in the phase space that are ergodic in a bounded
region. The chaotic region which appears just after the border of the beam, is due to the
nonregularity of the space-charge �eld which is not di�erentiable at the border.

Our simple model could explain the presence of an halo up to an amplitude 2-3
times the dimension of the beam; indeed since the nonlinear space-charge potential is
decreasing with the distance we recover a regular motion at larger amplitudes where a 6-
order resonance is present. The e�ect of the unmatched initial condition for the envelopes
is an enlargement of the chaotic region with respect to the matched case (compare with
�g. 4).
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Figure 4
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Phase-Space of a test particle in the matched case; the coordinates are scaled in such a way that the matched

beam occupies the circle of unit radius.

Further studies are necessary to correlate the F.M. with the di�usion in the phase
space which is more relevant for 2D systems. In order to illustrate the di�usion in the

12



Figure 5
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Top: F.M. analysis of the matched case by using 2000 points on the X-axis (in matched beam envelope units) as

initial conditions: the frequency is computed by using 10,000 iterations for each orbits; we report on the picture

the nonlinear resonances detected by the F.M.. Bottom: plot of the maximal horizontal amplitude as a function

of the initial amplitude for the same orbit used in the F.M. analysis.

chaotic region for our model we report in the bottom part of �g. 5 the largest amplitude
of each orbit as a function of the initial amplitude after 10,000 iterations. The 
at parts
of the picture corresponds to the chaotic regions where the orbits are ergodic, whereas a
resonance in the phase space produce a valley due to the island structure. We remark
the correspondence between the chaotic regions and the local behavior of the F.M.. If we
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Figure 6
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Phase-Space of a test particle in the mismatched case; the coordinates are scaled in such a way that the matched

beam occupies the circle of unit radius.

have a small di�usion in the phase space the largest amplitude can substantially change
as a function of the iterations number; on the contrary the F.M. picture is practically the

14



Figure 7
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Top:F.M. analysis of the unmatched case by using 2000 points on the X-axis (in matched beam envelope units) as

initial conditions: the frequency is computed by using 10,000 iterations for each orbits; we report on the picture

the integer coe�cients of the linear combination of the betatron frequency and the envelope frequencies which

de�ne the nonlinear resonances detected by the F.M.. Bottom: plot of the maximal horizontal amplitude as a

function of the initial amplitude for the same orbit used in the F.M. analysis.

same. Then a possible strategy to study the di�usion in the phase space is to detect all
the chaotic regions up to a certain scale and then to use a tracking program by considering
only the orbits in these regions. This strategy could dramatically reduce the CPU time
required for this analysis.
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Conclusions

The F.M. turns out to be an e�cient tool to represent the phase space of hamiltonian
systems. It allows to detect the position of the resonances and the chaotic regions with
an high accuracy and it can be used for time dependent systems with 1 or more degrees
of freedoms when the direct plot of the phase space is not possible. Our analysis on a
FODO cell in presence of a space-charge dominated beam suggests the possibility of using
the F.M. to study the di�usion of the orbits in the phase space in the mismatched case.
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